Common Core State Standards Math & ELA

Mill Valley School District April 4, 2012

Complied and Presented by Shelly Ostler Thelen

Resources listed at end of Presentation

Characteristics

- Aligned with college and career expectations
- Fewer and more rigorous
- Internationally benchmarked
- Rigorous content and application of higher-order skills
- Builds on strengths and lessons of current state standards
- Research and evidence based
- Coordinated by NGA and CCSSO

Intent of the Common Core

- The same goals for all students
- Coherence
- Focus
- Clarity and Specificity

- Key ideas, understandings, and skills are identified
- Deep learning of concepts is emphasized
- That is, time is spent on a topic and on learning it well. This counters the "mile wide, inch deep" criticism leveled at most current U.S. standards.

New Comprehensive Assessment System

Two assessment consortia

- Partnership for the Assessment of Readiness for College and Careers (PARCC)
- SMARTER Balanced Assessment Consortium
- Designed to replace individual state tests in ELA and mathematics
- Usher in a new and different approach to assessment design

Four Basic Principles

- Assessments are common across states and aligned to the CCSS
- Students take "performance-based" assessments for accountability
- The assessment systems are "computer-based" for more sophisticated design and quick, reliable scoring
- Transparent reporting systems drive effective decision making

SBAC

- Biggest difference between PARCC and SMARTER is their approach to assessment for accountability
- PARCC is using a "distributed" approach and SMARTER is using an end-of-year approach
- California is in Smarter Balance Consortium (SBAC)

CCSS Adoption States

Green – Adopted Orange – Not adopted Blue - Partial (ELA)

Smarter Balance

Governing States Advisory States

Proposed Assessments

- Grades 3 8 and 11, Optional testing in grades 9 and 10
- Both ELA and mathematics
- Administered in the last 12 weeks of school
- Computer Adaptive Tests (CAT)
- Performance tasks
- Accountability starts in the 2014-2015 year
- Optional Interim assessments during school year (no stakes)

Assessment

Assessment

ELA/Literacy and Mathematics, Grades 3-8 and High School

Re-take option available

Common Core State Standards for Mathematics

CCSSM Organization

- Domains: are large groups of related standards.
- Clusters: are groups of related standards. Clusters appear inside Domains.
- Standards: define what students should be able to understand and be able to do – part of a cluster.
- $\bullet K-8: \qquad \text{Grade} \longrightarrow \text{Domain} \longrightarrow \text{Cluster} \longrightarrow \text{Standards}$
- 9-12: Conceptual Category \rightarrow Domain \rightarrow Cluster \rightarrow Standards

ссssм 8 Mathematical Practices

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Mathematics Tasks

Novice

- Short items focused on skills and routines
- Apprentice
 - Medium performance tasks with scaffolding
- Expert
 - Long tasks with high cognitive load and/or completity

SBAC Math Claims

Claim #1 40%	Concepts & Procedures —Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency
Claim #2 20%	Problem Solving —Students can solve a range of complex well- posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
Claim #3 20%	Communicating Reasoning —Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.
Claim #4 20%	Modeling and Data Analysis —Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

Math Claim #1 (40%) Evidence – Brief Items

- Selected response items, including computer-enhanced items, can probe conceptual understanding, particularly when the distractors are chosen to embody common misconceptions.
- Short Constructed response items can assess mathematical thinking directly; most likely to be able to be machine scored. Can have a range of scaffolded items.
- Extended Response items requiring a more solid demonstration of conceptual understanding and procedural skills that students may be expected to have learned and practiced

SBAC Math Claims

Claim #2 20%	Problem Solving —Students can solve a range of complex well- posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
Claim #4 20%	Modeling and Data Analysis —Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

Math Claim #2 (20%) Evidence – Short Response

- Short constructed response items, or even computerenhanced or selected response items. Discrete and our singlestep problems.
- Extensive constructed response items can effectively assess multi-stage problem solving
 - non-routine problems where a substantial part of the challenge is in deciding what to do, and which mathematical tools to use;
 - Involve chains of autonomous reasoning, in which some tasks may take a successful student 5 to 10 minutes, depending on the age of student and complexity of the task.

SBAC Math Claims

Claim #2	Problem Solving —Students can solve a range of complex well-
20%	posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
Claim #3 20%	Communicating Reasoning —Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.

Math Claim #3 (20%) Evidence – Constructed Response

- Variety of item/task types, including selected response and short constructed response items, and with extended constructed response tasks.
- <u>Constructed</u> response with attention to precision and reasoning:
 - explanation of the assumptions made;
 - recognizing the construction of conjectures that appear plausible
 - construct examples in order to evaluate the proposition or conjecture;
 - describe or identify flaws or gaps in an argument;
 - precision with which the student constructs a logical sequence of steps

SBAC Math Claims

Claim #2 20%	Problem Solving —Students can solve a range of complex well- posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
Claim #4 20%	Modeling and Data Analysis —Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

Math Claim #4 (20%) Evidence – Constructed Response

- A key feature of items and tasks in Claim #4 is the student is confronted with a contextualized, or "real world" situation and must decide which information is relevant and how to represent it.
- Effectively formulate models of the situations presented and make appropriate inferences
- Items and tasks of this sort require students to apply mathematical concepts at a significantly deeper level of understanding of mathematical content than is expected by Claim #1

CCSS For ELA

Common Core State Standards for English Language Arts, & Literacy in History/Social Studies, Science, & Technical Subjects

Claim #1	Students can read closely and critically to comprehend a range of increasingly complex literary and informational texts.
Claim #2	Students can produce effective writing for a range of purposes and audiences.
Claim #3	Students can employ effective speaking and listening skills for a range of purposes and audiences.
Claim #4	Students can engage appropriately in collaborative and independent inquiry to investigate/research topics, pose questions, and gather and present information.
Claim #5	Students can skillfully use and interpret written language across a range of literacy tasks.

Students can read closely and critically to comprehend a range of increasingly complex literary and informational texts

- At grades 3-5, equal assessment emphasis will be placed on reading both literary and informational texts.
- At grades 6-8, assessment emphasis will shift
 - informational texts (55%)
 - literary texts (45%).
- By high school, greater emphasis (70%) will placed on reading a range of informational texts, including literary nonfiction.

Students can produce effective writing for a range of purposes and audiences

• At grades 3-5, assessment emphasis will be distributed as follows:

- narrative writing (35%)
- informational writing (35%)
- persuasive writing to support opinions based on evaluation of evidence (30%).
- At grades 6-8, emphasis will shift slightly to:
 - narrative writing (30%)
 - informational writing (35%)
 - persuasive writing (arguments) to support claims about topics or texts (35%).

Students can employ effective speaking and listening skills for a range of purposes and audiences

Listening:

Most of the listening items/tasks will be administered as part of the on-line computer-adaptive assessment (CAT). Some prompts for performance tasks outside of the CAT assessment may also assess listening skills.

• Speaking:

- Shorter summative speaking task (approximately 2-5 minutes), externally scored audio- or video-recorded presentations
- "common" summative speaking performance tasks (oral presentations) for local use during the school year at selected grade levels

Students can engage appropriately in collaborative and independent inquiry to investigate/research topics, pose questions, and gather and present information

 Multi-step performance tasks, students demonstrate their ability to apply literacy skills across content areas history/social studies, science, and technical subjects, as well as the language arts

Students can skillfully use and interpret written language across a range of literacy tasks.

- Similar standards addressing language use and vocabulary acquisition appear in different sections of the Common Core at all grade levels.
- The evidence for this claim comes collectively from specific reading, writing, and research items and tasks.

Timeline of Testing...

Year	SBAC	State
2011-2012	Developing formative assessment practices and instructional resources	Recruitment of CFCC
2012-2013 Fall	Write field test items and tasks. Check for bias	CFCC meets 6 times
2012-2013 Spring	Pilot testing in sample schools	Draft of Framework to start review STAR Test "Lite"
2013-2014	Field tests	Implementation of Frameworks STAR Test "Lite"
2014-2015	Assessment and digital library available to states	SBAC Testing
2015-2016	Instructional materials adoption	

- Incorporate Mathematical Practices
- Some districts are moving 100% to CCSS in Fall 2012
- The high school district needs the middle schools to move to CCSS first
- The middle schools need the elementary to move to CCSS
- After this year, testing will be aligned to CCSS

What do we do now?

- Seek out professional development
- Align standards with current resources
- Have depository of links to CCSS resources
 - There are a lot out there
 - Pearson foundation and Gates foundations are committed to making units available 2012-2013
- Vertical articulation

Credits/resources

- Academic Benchmarks <u>http://www.academicbenchmarks.com/ccss-state-status/140-sbac-states</u>
- California Mathematics Council <u>www.cmc-math.org</u>
- Common Core Standards Initiative www.corestandards.org
- http://commoncoretools.me/
- Content Specifications with Content Mapping for the Summative assessment of the CCSS for ELA & Literacy in History/Social Studies, Science, and Technical Subjects (September 19, 2011), SBAC
- Content Specifications for Summative assessment of the CCSSM (March 20, 2012), SBAC
- https://mathreasoninginventory.com/
- NCTM: CCSSM Overview 120210.v2.ppt <u>www.nctm.org</u>
- http://www.noycefdn.org/resources.php
- SBAC <u>http://www.smarterbalanced.org/</u>